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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Compact metric graphs

A compact metric graph is made of a finite number of vertices and of
finite length edges joining the vertices.
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

NLS: The differential system

Given constants p > 2 and a > 0 and a set Z of degree-one vertices, we
are interested in solutions u ∈ H1(G) of the differential system



−u′′ + au = |u|p−2u on each edge e of G,

u is continuous for every vertex v of G,∑
e≻v

du
dxe

(v) = 0 for every vertex v ∈ G \ Z ,

u(v) = 0 for every vertex v ∈ Z ,

(NLS)

where the symbol e ≻ v means that the sum ranges over all edges of
vertex v and where du

dxe
(v) is the outgoing derivative of u at v

(Kirchhoff’s condition).
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Kirchhoff’s condition: degree one nodes

x1

lim
t−−→

t>0
0

u(x1 + t) − u(x1)
t = 0

In other words, the derivative of u at x1 vanishes: this is the usual
Neumann condition.
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Kirchhoff’s condition in general: outgoing derivatives

x1

∑
e≻v

du
dxe

(v) = 0
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Variational formulation and functional spaces

Sobolev spaces:

H1(G) :=
{

u : G → R | u is continuous, u, u′ ∈ L2(G)
}
,

H1
Z (G) :=

{
u ∈ H1(G) | u(v) = 0 for all v ∈ Z

}
.

Solutions of (NLS) correspond to critical points of

1
2∥u′∥2

L2(G) + a
2∥u∥2

L2(G) − 1
p ∥u∥p

Lp(G).

over H1
Z .
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Idea: p → 2

The ODE under study is

−u′′ + au = |u|p−2u.

When p = 2, the equation becomes

−u′′ + au = u,

which is linear.

Hope: obtain more information in the regime p ≈ 2, by studying the
spectral properties of the problem.
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

The eigenvalue problem

We denote by (λk)k≥1 the sequence of eigenvalues of the problem

−u′′ + au = λu on every edge of G,

u is continuous on G,∑
e≻v

u′
e(v) = 0 for every v ∈ V \ Z ,

u(v) = 0 for every v ∈ Z .

(P2)

Ek : eigenspace associated to λk .
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Goal

For every positive integer k and p > 2, we want to relate solutions of the
nonlinear problem

−ũ′′ + aũ = |ũ|p−2ũ on every edge of G,

ũ is continuous on G,∑
e≻v

ũ′
e(v) = 0 for every v ∈ V \ Z ,

ũ(v) = 0 for every v ∈ Z ,

to the eigenfunctions of the eigenvalue problem (P2) with eigenvalue λk .
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

A rescaling

In order to better understand the behaviour of the solutions as p → 2, we
consider the new variable u = λ

−1/(p−2)
k ũ.

They are solutions of the
nonlinear problem

−u′′ + au = λk |u|p−2u on every edge of G,
u is continuous on G,∑
e≻v

u′
e(v) = 0 for every v ∈ V \ Z ,

u(v) = 0 for every v ∈ Z .

(Pp,k)

The rescaling will allow sequences of solutions of (Pp,k) (with variable p)
to be bounded in H1 when p → 2.
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

The reduced problem when p ≈ 2

Let (upn)n be a sequence of solutions to (Ppn,k), (pn)n ⊆ ]2,+∞[, pn → 2.

Assume that
upn

H1
Z−−−⇀

n→∞
u∗.

Question
What can we say about u∗?
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

The reduced problem when p ≈ 2

Let φ ∈ H1
Z (G). Using φ as a test function in (Ppn,k), we get∫

G
(u′

pnφ
′ + aupnφ) dx = λk

∫
G

|upn |pn−2upnφdx .

Taking the limit n → ∞ leads to (since pn → 2)∫
G
(u′

∗φ
′ + au∗φ) dx = λk

∫
G

u∗φdx .

Therefore, u∗ belongs to Ek .

Question
Is that all we can say about u∗?
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

The reduced problem when p ≈ 2

Let us use specifically ψ ∈ Ek as a test function in (Ppn,k). We obtain∫
G
(u′

pnψ
′ + aupnψ) dx = λk

∫
G

|upn |pn−2upnψ dx .

Using upn as a test function in the equation −ψ′′ + aψ = λkψ, we get∫
G
(u′

pnψ
′ + aupnψ) dx = λk

∫
G

upnψ dx .

Thus, ∫
G

(
|upn |pn−2 − 1

)
upnψ dx = 0.
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

The reduced problem when p ≈ 2
We divide by pn − 2:∫

G

|upn |pn−2 − 1
pn − 2 upnψ dx =

∫
G

e(pn−2) ln |upn | − 1
pn − 2 upnψ dx = 0.

Taking n → ∞ leads to ∫
G

(
u∗ ln |u∗|

)
ψ dx = 0.

Definition
A function u∗ ∈ Ek is a solution of the reduced problem on Ek if and
only if ∫

G

(
u∗ ln |u∗|

)
ψ dx = 0

for all ψ ∈ Ek .
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Recap

Given a sequence (upn)n, pn → 2 converging weakly to u∗ ∈ H1
Z , we have

seen that necessarily:

u∗ belongs to Ek ;
u∗ is a solution of the reduced problem, namely be so that∫

G

(
u∗ ln |u∗|

)
ψ dx = 0

for all ψ ∈ Ek .

Question
Given a solution of the reduced problem u∗ ∈ Ek , can one find solutions of
(Pp,k) close to u∗ for p ≈ 2? Can one detect when there is only one
solution close to u∗ for a given p ≈ 2?
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Lyapunov-Schmidt reduction
Functional space with extra regularity:

H :=
{

u ∈ H1
Z | u is H2 in each edge, u satisfies Kirchhoff’s conditions

}
.

We fix k ≥ 1 and we define the map

F :
{

[2,+∞[ × H → L2(G),
(p, u) 7→ −u′′ + au − λk |u|p−2u.

When p = 2,
F (2, u) = 0 ⇐⇒ u ∈ Ek

and when p > 2,

F (p, u) = 0 ⇐⇒ u solves (Pp,k).
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(p, u) 7→ −u′′ + au − λk |u|p−2u.

When p = 2,
F (2, u) = 0 ⇐⇒ u ∈ Ek

and when p > 2,

F (p, u) = 0 ⇐⇒ u solves (Pp,k).
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Rough idea

We want to study the dependence of roots of F in terms of p.

We would
like to use Implicit Function Theorems, but F “vanishes too much” for
p = 2 (in fact, vanishes identically on Ek !)

Lyapunov-Schmidt reduction (PEk ,PE⊥
k

: L2-orthogonal projections):

F (p, u) = 0 ⇐⇒

PE⊥
k

F (p, u) = 0,
PEk F (p, u) = 0,

we obtain good invertibility properties on E⊥
k and we are then reduced to a

finite dimensional problem on Ek .
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

A word of caution

Be careful!
� Implicit Function Theorems require regularity! �

To perform the Lyapunov-Schmidt reduction around u∗, we will need

F :
{

[2,+∞[ × H → L2(G),
(p, u) 7→ −u′′ + au − λk |u|p−2u.

to be C2 in u in the neighborhood of (2, u∗).
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

An important set
Expressions such as

u 7→ u ln |u|
and its derivative

u 7→ 1 + ln |u|
appear in the study.

Regularity issues occur when u vanishes!

Definition (An important set)

S :=
{

u ∈ H | inf
x∈G

(
|u(x)| + |u′(x)|

)
> 0

}
.

Remark: if u ∈ Ek , then(
u ∈ S

)
⇐⇒ u does not vanish identically on edge of G.
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Nondegenerate solutions of the reduced problem

Definition
A solution u∗ ∈ Ek ∩ S of the reduced problem on Ek is nondegenerate if
and only if the map

Ek → Ek : ψ 7→ PEk

(
(1 + ln |u∗|)ψ

)
is invertible.

Remark: nondegeneracy always holds if dim Ek = 1.
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Main Theorem

Theorem
Let k ≥ 1 be an integer and let u∗ ∈ Ek ∩ S.

1 non-existence: If u∗ is not a solution of the reduced problem, then
there exists a neighbourhood U of (2, u∗) in [2,+∞[ × H so that
problem (Pp,k) has no solution in U with p > 2;

2 existence, uniqueness and non-degeneracy: If u∗ is a
nondegenerate solution of the reduced problem, then there exists a
neighbourhood U of (2, u∗) in [2,+∞[ × H and a number ε > 0 so
that for all p ∈ ]2, 2 + ε], there exists a unique up ∈ H so that (p, up)
belongs to U and so that up is a solution of problem (Pp,k).
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Variational formulation of (Pp,k)

Definition (Action functional)
The action functional Jp,k : H1

Z → R is defined by

Jp,k(u) := 1
2∥u′∥2

L2(G) + a
2∥u∥2

L2(G) − λk
p ∥u∥p

Lp(G).

Solutions of (Pp,k) correspond to critical points of Jp,k over H1
Z .

One cannot find minimizers of Jp,k over H1
Z . Indeed, if u ̸= 0, then

Jp,k(tu) = t2

2 ∥u′∥2
L2(G) + at2

2 ∥u∥2
L2(G) − tp

p ∥u∥p
Lp(G) −−−→

t→∞
−∞.

A common strategy to obtain a suitable notion of minimizers is to
introduce the Nehari manifold, as in Colette’s talk.
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

The Nehari manifold

Definition (Nehari manifold)
The Nehari manifold is defined by

Np,k(G) :=
{

u ∈ H1
Z (G) \ {0} | J ′

p,k(u)[u] = 0
}

=
{

u ∈ H1
Z (G) \ {0} | ∥u′∥2

L2(G) + a∥u∥2
L2(G) = λk∥u∥p

Lp(G)

}
.

If u ∈ Np,k(G), then

Jp,k(u) = λk
(1

2 − 1
p

)
∥u∥p

Lp(G).

In particular, Jp,k is bounded from below on Np,k(G).
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Ground states

Definition (Ground state)
A ground state is a function u ∈ Np,k(G) attaining the minimum of Jp,k
over Np,k(G).

Ground states always exist when G is compact and provide positive
solutions to (Pp,k).
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Nodal ground states

Definition (Nodal Nehari set)
The nodal Nehari set is defined by

N ±
p,k(G) :=

{
u ∈ H1

Z (G) \ {0} | u+ ∈ Np,k , u− ∈ Np,k
}
.

Definition (Nodal ground state)
A nodal ground state is a function u ∈ N ±

p,k(G) attaining the minimum of
Jp,k over N ±

p,k(G).

Nodal ground states always exist when G is compact and provide
sign-changing solutions to (Pp,k) with two nodal zones.
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Variational formulation of the reduced problem on Ek

Definition (Reduced functional)
The reduced functional J∗,k : Ek → R is defined by

J∗,k(ψ) := λk
4

∫
G
ψ2(1 − 2 ln |ψ|) dx .

For all ψ ∈ Ek ,
Jp,k(ψ)
p − 2 −−−→

p→2
J∗,k(ψ);

The reduced functional is C2 on Ek ∩ S;
Solutions of the reduced problem correspond to critical points of J∗,k ;
Nondegenerate solutions of the reduced problem correspond to
nondegenerate critical points of J∗,k .
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

The reduced Nehari manifold

Definition (Reduced Nehari manifold)
Given a positive integer k, the reduced Nehari manifold is given by

N∗,k(G) :=
{
ψ ∈ Ek \ {0} | J ′

∗,k(ψ)[ψ] = 0
}

=
{
ψ ∈ Ek \ {0} |

∫
G
ψ2 ln |ψ| = 0

}
.

All critical points of J∗,k belong to N∗,k .

Remark: since dim E1 = 1, N∗,1(G) only contains two elements: a positive
one and a negative one.
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

Uniqueness of positive solutions for p ≈ 2

Theorem
If p ≈ 2 is close enough to 2, the positive solution of (Pp,1) is unique and
is a ground state of the problem.

Main ingredients of the proof.

Show that there exists C > 0 such that all positive solutions of (Pp,1)
with 2 < p ≤ 3 satisfy ∥u∥H1(G) ≤ C ;
When p → 2, sequences of positive solutions to (Pp,1) converge
weakly (up to subsequences) to the only positive element u∗ ∈ N∗,1;
Since dim E1 = 1, u∗ is a nondegenerate critical point of J∗;
The Lyapunov-Schmidt reduction proves the uniqueness result.
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The Lyapunov-Schmidt reduction proves the uniqueness result.
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Convergence of nodal ground states when p → 2

Theorem (Convergence of nodal ground states)
If (upn)n is a sequence of nodal ground states of (Pp,k) with pn → 2, then
up to a subsequence one has that

upn
H2

−−−→
n→∞

u∗,

where u∗ ∈ E2 minimizes J∗ over N∗,2.

If u∗ belongs to S (i.e. does not vanish on any edge) and is
nondegenerate, one may then obtain uniqueness and symmetry results by
using the Lyapunov-Schmidt reduction.
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The graph GL

L

L

L

A compact symmetric 3-star graph with edges of length L.

Definition (Symmetric functions on GL)
A function u : GL → R is symmetric if its restrictions to all edges, viewed
as functions [0, L] → R, are all equal.
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Symmetry breaking

Proposition
For any p > 2, if L is large enough then the ground state on GL is not
symmetric.

Proof.

A rearrangement argument implies that symmetric functions have a too
high action compared to suitable nonsymmetric ones. Since L is large, the
level of the soliton in H1(R) plays an important role.

Conclusion
Symmetry breaking occurs!
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A bifurcation diagram for positive solutions on GL: p is
fixed, L varies
Vertical axis: possible values of u′

1(0), the derivative of the solution on one
given edge of the graph:

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
L

10 2

10 1

100

n = 3, a = 1,  = 1, p = 3
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Another bifurcation diagram: L is fixed, p varies

2.4 2.6 2.8 3.0 3.2 3.4
p

10 3

10 2

10 1

u'
(0

)
n = 3, L = 5, a = 1,  = 5
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What about p close to 2?

We need to find minimizers of the reduced functional J∗,2 on N∗,2.

The first step is to identify the second eigenspace E2.
Identifying functions on GL with triples of functions from [0, L] to R, we
obtain

E2 =
{

(k1 sin(xπ/L), k2 sin(xπ/L), k3 sin(xπ/L))
∣∣ k1 + k2 + k3 = 0

}
.
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Minimizers points of the reduced functional

Proposition
The set of minimizers of J∗,2 on N∗,2 is

Sm :=
{

(km,−km, 0), (−km, km, 0), (km, 0,−km),

(−km, 0, km), (0, km,−km), (0,−km, km)
}
,

with km := 2√
e .
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Two asymptotic results

Theorem (2024?)
For any p > 2, if L is long enough, then NGS on GL vanish on one edge.

Theorem (2024?)
For any L > 0, if p > 2 is close enough to 2, then NGS on GL vanish on
one edge.
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Summary of what we know about GL

GS NGS
p → 2 (L fixed) Unique, symmetric Vanish on one edge

L → +∞ (p > 2 fixed) Not symmetric Vanish on one edge
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

What to do when u∗ vanishes on an edge?

In the Lyapunov-Schmidt reduction, we can only deal with eigenfunctions
not vanishing on any edge (i.e. u∗ ∈ S) due to regularity reasons.

Question
Assuming dim Ek = 1, can we perform a Lyapunov-Schmidt reduction
starting from an eigenfunction vanishing on one edge of a graph? Can we
obtain existence and uniqueness results of solutions of the nonlinear
problem close to u∗?
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Introduction p → 2 GS and NGS Symmetry breaking NGS may vanish! Open questions

What if edges aren’t that long?

When studying properties of ground states and nodal ground states on
compact symmetric stars, we use the fact that when the edges are long,
(nodal) ground states look like portions of solitons.

Question
Can the asymptotic arguments be dropped in order to identify more
precise thresholds of:

symmetry vs asymmetry;
solutions vanishing on edge vs solutions in S?
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Thanks for your attention!
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References for p → 2

The p → 2 analysis was largely based on

M. Grossi, �On the shape of solutions of an asymptotically linear
problem �, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), Vol. VIII
(2009), 429–449.

D. Bonheure, V. Bouchez, C. Grumiau, J. Van Schaftingen
Asymptotics and symmetries of least energy nodal solutions of
Lane-Emden problems with slow growth, Communications in
Contemporary Mathematics, Vol. 10, No. 4 (2008) 609–631.

C. Grumiau, Symmetries of solutions for nonlinear Schrödinger
equations: Numerical and Theoretical approaches, PhD Thesis
(UMONS, 2010-2011).
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A more precise result on NGS vanishing on edges

v0 v1
L1

v2

L2v3

L3

v4
L4

v5

L5

Figure: A graph under study: L1=L2 ≥ L3 ≥ L4 ≥ L5.

For such a graph, if a > 0 and p > 2 are fixed, there exists L̄ > 0 so that if
L1 ≥ L̄ then NGS vanish on all edges except two of length L1.
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Maximizers of J∗,2

Theorem
The set of maximizers of J∗,2 is

SM :=
{

(kM , kM ,−2kM), (−kM ,−kM , 2kM), (kM ,−2kM , kM),

(−kM , 2kM ,−kM), (−2kM , kM , kM), (2kM ,−kM ,−kM)
}
,

with kM :=
3√2√

e .

They correspond to solutions of the nonlinear problem that can be found
by shooting methods or variationally.
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The second eigenspace may have high dimension

Example
Computations on the blackboard!
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An important H1(R) solution: the soliton φp (a > 0)

For every p > 2, we consider the soliton φp, the unique positive and even
solution to

−u′′ + au = λ1(GL)|u|p−2u.

∞ ∞

The level of φp is important to study solutions on GL when L is large:

sp := Jp,1(φp).
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More details on the proof of symmetry breaking

Proposition
For any p > 2, if L is large enough then the ground state on GL is not
symmetric.

Proof.

A rearrangement argument implies that the action of any symmetric
function in Np is larger than 3

2sp. Moreover, infNp Jp gets close to sp
when L is large. Since 3

2 > 1, GS are not symmetric when L is large.

Conclusion
Symmetry breaking occurs!
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Another asymptotic regime: p → +∞

About positive solutions (Ω ⊆ R2):

X. Ren, J. Wei, On a Two-Dimensional Elliptic Problem with Large
Exponent in Nonlinearity, Transactions of the American Mathematical
Society, Vol. 343, No. 2 (Jun., 1994), 749–763.

About NGS (Ω ⊆ R2):

M. Grossi, C. Grumiau, F. Pacella, Lane–Emden problems: Asymptotic
behavior of low energy nodal solutions, Ann. I. H. Poincaré – AN 30
(2013) 121–140.

M. Grossi, C. Grumiau, F. Pacella, Lane Emden problems with large
exponents and singular Liouville equations, J. Math. Pures Appl. 101
(2014) 735–754.

In those works, one needs to study the Green’s function of −∆ in Ω.
Works in dimension N ≥ 3 also exist.
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Higher eigenvalues

In the Lyapunov-Schmidt reduction procedure, we can work with any
eigenvalue λk .

So far, most of the study focuses on the case k = 1,
associated to positive solutions and ground states, and k = 2, associated
to nodal ground states. It would be interesting to study which solutions of
nonlinear problems are associated with higher eigenfunctions.
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