Introduction	p → 2	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
--------------	-------	------------	-------------------	-----------------	----------------

Qualitative properties of solutions of NLS on graphs Nonlinear Quantum Graphs (Institut de Mathématiques de Toulouse)

Damien Galant

CERAMATHS/DMATHS

Département de Mathématique

Université Polytechnique Hauts-de-France Université de Mons F.R.S.-FNRS Research Fellow

Joint work **A** in progress **A** with Colette De Coster (CERAMATHS/DMATHS) and Christophe Troestler (UMONS)

Thursday 11 January 2024

Introduction	p → 2	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
--------------	-------	------------	-------------------	-----------------	----------------

1 Introduction

- 2 What happens when $p \rightarrow 2$?
- **3** Behavior of (nodal) ground states when $p \rightarrow 2$
- 4 Uniqueness, symmetry and symmetry breaking for ground states
- 5 Nodal ground states may vanish on edges!
- 6 Open questions and perspectives

Compact metric graphs

A compact metric graph is made of a finite number of vertices and of finite length edges joining the vertices.

$\begin{array}{c} \text{Introduction} & p \rightarrow 2 \\ \hline \end{array}$	GS and NGS	Symmetry breaking	g NGS may vanish! □──	Open questions
--	------------	-------------------	--------------------------	----------------

$$\int -u'' + au = |u|^{p-2}u$$
 on each edge e of $\mathcal{G},$

$$\int -u'' + au = |u|^{p-2}u$$
 on each edge e of \mathcal{G} ,
 u is continuous for every vertex v of \mathcal{G} .

$$\begin{aligned} (-u'' + au &= |u|^{p-2}u & \text{ on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{ for every vertex } v \text{ of } \mathcal{G}, \\ \sum_{e \succ v} \frac{\mathrm{d}u}{\mathrm{d}x_e}(v) &= 0 & \text{ for every vertex } v \in \mathcal{G} \setminus Z, \end{aligned}$$

$$\begin{cases} -u'' + au = |u|^{p-2}u & \text{on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{for every vertex } v \text{ of } \mathcal{G}, \\ \sum_{e \succ v} \frac{\mathrm{d}u}{\mathrm{d}x_e}(v) = 0 & \text{for every vertex } v \in \mathcal{G} \setminus Z, \\ u(v) = 0 & \text{for every vertex } v \in Z, \end{cases}$$

Given constants p > 2 and a > 0 and a set Z of degree-one vertices, we are interested in solutions $u \in H^1(\mathcal{G})$ of the differential system

where the symbol $e \succ v$ means that the sum ranges over all edges of vertex v and where $\frac{du}{dx_e}(v)$ is the outgoing derivative of u at v (*Kirchhoff's condition*).

Given constants p > 2 and a > 0 and a set Z of degree-one vertices, we are interested in solutions $u \in H^1(\mathcal{G})$ of the differential system

where the symbol $e \succ v$ means that the sum ranges over all edges of vertex v and where $\frac{du}{dx_e}(v)$ is the outgoing derivative of u at v (*Kirchhoff's condition*).

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Kirchhoff's condition: degree one nodes

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Kirchhoff's condition: degree one nodes

In other words, the derivative of u at x_1 vanishes: this is the usual Neumann condition.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Kirchhoff's condition in general: outgoing derivatives

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Variational formulation and functional spaces

Sobolev spaces:

$$\begin{split} & H^1(\mathcal{G}) := \Big\{ u : \mathcal{G} \to \mathbb{R} \mid u \text{ is continuous, } u, u' \in L^2(\mathcal{G}) \Big\}, \\ & H^1_Z(\mathcal{G}) := \Big\{ u \in H^1(\mathcal{G}) \mid u(v) = 0 \text{ for all } v \in Z \Big\}. \end{split}$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Variational formulation and functional spaces

Sobolev spaces:

$$\begin{split} & H^1(\mathcal{G}) := \Big\{ u : \mathcal{G} \to \mathbb{R} \mid u \text{ is continuous, } u, u' \in L^2(\mathcal{G}) \Big\}, \\ & H^1_Z(\mathcal{G}) := \Big\{ u \in H^1(\mathcal{G}) \mid u(v) = 0 \text{ for all } v \in Z \Big\}. \end{split}$$

Solutions of (NLS) correspond to critical points of

$$\frac{1}{2}\|u'\|_{L^2(\mathcal{G})}^2 + \frac{a}{2}\|u\|_{L^2(\mathcal{G})}^2 - \frac{1}{p}\|u\|_{L^p(\mathcal{G})}^p.$$

over H_Z^1 .

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
Idea: p	$\rightarrow 2$				

The ODE under study is

$$-u''+au=|u|^{p-2}u.$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Idea: $p \rightarrow 2$

The ODE under study is

$$-u'' + au = |u|^{p-2}u.$$

When p = 2, the equation becomes

$$-u'' + au = u,$$

which is linear.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Idea: $p \rightarrow 2$

The ODE under study is

$$-u'' + au = |u|^{p-2}u.$$

When p = 2, the equation becomes

$$-u'' + au = u,$$

which is linear.

Hope: obtain more information in the regime $p \approx 2$, by studying the *spectral* properties of the problem.

The eigenvalue problem

We denote by $(\lambda_k)_{k\geq 1}$ the sequence of eigenvalues of the problem

$$\begin{cases} -u'' + au = \lambda u & \text{ on every edge of } \mathcal{G}, \\ u \text{ is continuous } & \text{ on } \mathcal{G}, \\ \sum_{e \succ \vee} u'_e(\vee) = 0 & \text{ for every } \vee \in \mathbb{V} \setminus Z, \\ u(\vee) = 0 & \text{ for every } \vee \in Z. \end{cases}$$

 (\mathcal{P}_2)

The eigenvalue problem

We denote by $(\lambda_k)_{k\geq 1}$ the sequence of eigenvalues of the problem

$$\begin{cases} -u'' + au = \lambda u & \text{ on every edge of } \mathcal{G}, \\ u \text{ is continuous } & \text{ on } \mathcal{G}, \\ \sum_{e \succ \vee} u'_e(\vee) = 0 & \text{ for every } \vee \in \mathbb{V} \setminus Z, \\ u(\vee) = 0 & \text{ for every } \vee \in Z. \end{cases}$$

 E_k : eigenspace associated to λ_k .

 (\mathcal{P}_2)

For every positive integer k and p > 2, we want to relate solutions of the nonlinear problem

$$\begin{cases} -\tilde{u}'' + a\tilde{u} = |\tilde{u}|^{p-2}\tilde{u} & \text{ on every edge of } \mathcal{G}, \\ \tilde{u} \text{ is continuous } & \text{ on } \mathcal{G}, \\ \sum_{e \succ V} \tilde{u}'_e(V) = 0 & \text{ for every } V \in \mathbb{V} \setminus Z, \\ \tilde{u}(V) = 0 & \text{ for every } V \in Z, \end{cases}$$

to the eigenfunctions of the eigenvalue problem (\mathcal{P}_2) with eigenvalue λ_k .

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

A rescaling

In order to better understand the behaviour of the solutions as $p \to 2$, we consider the new variable $u = \lambda_k^{-1/(p-2)} \tilde{u}$.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

A rescaling

In order to better understand the behaviour of the solutions as $p \to 2$, we consider the new variable $u = \lambda_k^{-1/(p-2)} \tilde{u}$. They are solutions of the nonlinear problem

$$\begin{cases} -u'' + au = \lambda_k |u|^{p-2}u & \text{ on every edge of } \mathcal{G}, \\ u \text{ is continuous} & \text{ on } \mathcal{G}, \\ \sum_{e \succ V} u'_e(V) = 0 & \text{ for every } V \in \mathbb{V} \setminus Z, \\ u(V) = 0 & \text{ for every } V \in Z. \end{cases}$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

A rescaling

In order to better understand the behaviour of the solutions as $p \to 2$, we consider the new variable $u = \lambda_k^{-1/(p-2)} \tilde{u}$. They are solutions of the nonlinear problem

$$\begin{cases} -u'' + au = \lambda_k |u|^{p-2}u & \text{ on every edge of } \mathcal{G}, \\ u \text{ is continuous} & \text{ on } \mathcal{G}, \\ \sum_{e \succ V} u'_e(V) = 0 & \text{ for every } V \in \mathbb{V} \setminus Z, \\ u(V) = 0 & \text{ for every } V \in Z. \end{cases}$$
 $(\mathcal{P}_{p,k})$

The rescaling will allow sequences of solutions of $(\mathcal{P}_{p,k})$ (with variable p) to be bounded in H^1 when $p \to 2$.

Let $(u_{p_n})_n$ be a sequence of solutions to $(\mathcal{P}_{p_n,k})$, $(p_n)_n \subseteq]2, +\infty[, p_n \rightarrow 2.$

Let $(u_{p_n})_n$ be a sequence of solutions to $(\mathcal{P}_{p_n,k})$, $(p_n)_n \subseteq]2, +\infty[$, $p_n \to 2$.

Assume that

$$u_{p_n} \xrightarrow[n \to \infty]{H^1_Z} u_*.$$

Let $(u_{p_n})_n$ be a sequence of solutions to $(\mathcal{P}_{p_n,k})$, $(p_n)_n \subseteq]2, +\infty[$, $p_n \to 2$.

Assume that

$$u_{p_n} \xrightarrow[n \to \infty]{H^1_Z} u_*.$$

Question

What can we say about u_* ?

The reduced problem when $p \approx 2$

Let $\varphi \in H^1_Z(\mathcal{G})$. Using φ as a test function in $(\mathcal{P}_{\rho_n,k})$, we get

$$\int_{\mathcal{G}} (u'_{p_n} \varphi' + a u_{p_n} \varphi) \, \mathrm{d}x = \lambda_k \int_{\mathcal{G}} |u_{p_n}|^{p_n - 2} u_{p_n} \varphi \, \mathrm{d}x.$$

The reduced problem when $p \approx 2$

Let $\varphi \in H^1_Z(\mathcal{G})$. Using φ as a test function in $(\mathcal{P}_{\rho_n,k})$, we get

$$\int_{\mathcal{G}} (u'_{p_n} \varphi' + a u_{p_n} \varphi) \, \mathrm{d}x = \lambda_k \int_{\mathcal{G}} |u_{p_n}|^{p_n - 2} u_{p_n} \varphi \, \mathrm{d}x.$$

Taking the limit $n \to \infty$ leads to (since $p_n \to 2$)

$$\int_{\mathcal{G}} (u'_* \varphi' + a u_* \varphi) \, \mathrm{d} x = \lambda_k \int_{\mathcal{G}} u_* \varphi \, \mathrm{d} x.$$

The reduced problem when $p \approx 2$

Let $\varphi \in H^1_Z(\mathcal{G})$. Using φ as a test function in $(\mathcal{P}_{\rho_n,k})$, we get

$$\int_{\mathcal{G}} (u'_{p_n} \varphi' + a u_{p_n} \varphi) \, \mathrm{d}x = \lambda_k \int_{\mathcal{G}} |u_{p_n}|^{p_n - 2} u_{p_n} \varphi \, \mathrm{d}x.$$

Taking the limit $n \to \infty$ leads to (since $p_n \to 2$)

$$\int_{\mathcal{G}} (u'_* \varphi' + a u_* \varphi) \, \mathrm{d}x = \lambda_k \int_{\mathcal{G}} u_* \varphi \, \mathrm{d}x.$$

Therefore, u_* belongs to E_k .

The reduced problem when $p \approx 2$

Let $\varphi \in H^1_Z(\mathcal{G})$. Using φ as a test function in $(\mathcal{P}_{\rho_n,k})$, we get

$$\int_{\mathcal{G}} (u'_{p_n} \varphi' + a u_{p_n} \varphi) \, \mathrm{d}x = \lambda_k \int_{\mathcal{G}} |u_{p_n}|^{p_n - 2} u_{p_n} \varphi \, \mathrm{d}x.$$

Taking the limit $n \to \infty$ leads to (since $p_n \to 2$)

$$\int_{\mathcal{G}} (u'_* \varphi' + a u_* \varphi) \, \mathrm{d} x = \lambda_k \int_{\mathcal{G}} u_* \varphi \, \mathrm{d} x.$$

Therefore, u_* belongs to E_k .

Question

Is that all we can say about u_* ?

Let us use specifically $\psi \in E_k$ as a test function in $(\mathcal{P}_{p_n,k})$. We obtain

$$\int_{\mathcal{G}} (u'_{p_n}\psi' + au_{p_n}\psi) \,\mathrm{d}x = \lambda_k \int_{\mathcal{G}} |u_{p_n}|^{p_n-2} u_{p_n}\psi \,\mathrm{d}x.$$

Let us use specifically $\psi \in E_k$ as a test function in $(\mathcal{P}_{p_n,k})$. We obtain

$$\int_{\mathcal{G}} (u'_{p_n} \psi' + a u_{p_n} \psi) \, \mathrm{d}x = \lambda_k \int_{\mathcal{G}} |u_{p_n}|^{p_n - 2} u_{p_n} \psi \, \mathrm{d}x$$

Using u_{p_n} as a test function in the equation $-\psi'' + a\psi = \lambda_k \psi$, we get

$$\int_{\mathcal{G}} (u'_{p_n} \psi' + a u_{p_n} \psi) \, \mathrm{d}x = \lambda_k \int_{\mathcal{G}} u_{p_n} \psi \, \mathrm{d}x.$$

Let us use specifically $\psi \in E_k$ as a test function in $(\mathcal{P}_{p_n,k})$. We obtain

$$\int_{\mathcal{G}} (u'_{p_n}\psi' + au_{p_n}\psi) \,\mathrm{d}x = \lambda_k \int_{\mathcal{G}} |u_{p_n}|^{p_n - 2} u_{p_n}\psi \,\mathrm{d}x$$

Using u_{p_n} as a test function in the equation $-\psi'' + a\psi = \lambda_k \psi$, we get

$$\int_{\mathcal{G}} (u'_{p_n} \psi' + a u_{p_n} \psi) \, \mathrm{d} x = \lambda_k \int_{\mathcal{G}} u_{p_n} \psi \, \mathrm{d} x.$$

Thus,

$$\int_{\mathcal{G}} (|u_{p_n}|^{p_n-2}-1) u_{p_n} \psi \, \mathrm{d} x = 0.$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

We divide by $p_n - 2$:

$$\int_{\mathcal{G}} \frac{|u_{p_n}|^{p_n-2}-1}{p_n-2} u_{p_n} \psi \, \mathrm{d} x = \int_{\mathcal{G}} \frac{\mathrm{e}^{(p_n-2)\ln|u_{p_n}|}-1}{p_n-2} u_{p_n} \psi \, \mathrm{d} x = 0.$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

We divide by $p_n - 2$:

$$\int_{\mathcal{G}} \frac{|u_{p_n}|^{p_n-2}-1}{p_n-2} u_{p_n} \psi \, \mathrm{d} x = \int_{\mathcal{G}} \frac{\mathrm{e}^{(p_n-2)\ln|u_{p_n}|}-1}{p_n-2} u_{p_n} \psi \, \mathrm{d} x = 0.$$

Taking $n \to \infty$ leads to

$$\int_{\mathcal{G}} (u_* \ln |u_*|) \psi \, \mathrm{d}x = 0.$$
$\begin{array}{ccc} \text{Introduction} & \textbf{p} \rightarrow 2 \\ \hline \hline$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
--	------------	-------------------	-----------------	----------------

The reduced problem when $p \approx 2$

We divide by $p_n - 2$:

$$\int_{\mathcal{G}} \frac{|u_{p_n}|^{p_n-2}-1}{p_n-2} u_{p_n} \psi \, \mathrm{d} x = \int_{\mathcal{G}} \frac{\mathrm{e}^{(p_n-2)\ln|u_{p_n}|}-1}{p_n-2} u_{p_n} \psi \, \mathrm{d} x = 0.$$

Taking $n \to \infty$ leads to

$$\int_{\mathcal{G}} (u_* \ln |u_*|) \psi \, \mathrm{d}x = 0.$$

Definition

A function $u_* \in E_k$ is a solution of the reduced problem on E_k if and only if

$$\int_{\mathcal{G}} (u_* \ln |u_*|) \psi \, \mathrm{d} x = 0$$

for all $\psi \in E_k$.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
Recap					

Given a sequence $(u_{p_n})_n$, $p_n \to 2$ converging weakly to $u_* \in H^1_Z$, we have seen that necessarily:

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
Recap					

Given a sequence $(u_{p_n})_n$, $p_n \to 2$ converging weakly to $u_* \in H^1_Z$, we have seen that necessarily:

• u_* belongs to E_k ;

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Recap

Given a sequence $(u_{p_n})_n$, $p_n \to 2$ converging weakly to $u_* \in H^1_Z$, we have seen that necessarily:

- u_* belongs to E_k ;
- u_* is a solution of the reduced problem, namely be so that

$$\int_{\mathcal{G}} (u_* \ln |u_*|) \psi \, \mathrm{d}x = 0$$

for all $\psi \in E_k$.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Recap

Given a sequence $(u_{p_n})_n$, $p_n \to 2$ converging weakly to $u_* \in H^1_Z$, we have seen that necessarily:

- u_* belongs to E_k ;
- u_* is a solution of the reduced problem, namely be so that

$$\int_{\mathcal{G}} (u_* \ln |u_*|) \psi \, \mathrm{d}x = 0$$

for all $\psi \in E_k$.

Question

Given a solution of the reduced problem $u_* \in E_k$, can one find solutions of $(\mathcal{P}_{p,k})$ close to u_* for $p \approx 2$? Can one detect when there is only one solution close to u_* for a given $p \approx 2$?

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Functional space with extra regularity:

$$H := \Big\{ u \in H^1_Z \mid u \text{ is } H^2 \text{ in each edge}, u \text{ satisfies Kirchhoff's conditions} \Big\}.$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Functional space with extra regularity:

$$H := \left\{ u \in H^1_Z \mid u \text{ is } H^2 \text{ in each edge}, u \text{ satisfies Kirchhoff's conditions}
ight\}.$$

We fix $k \geq 1$ and we define the map

$$F:\begin{cases} [2,+\infty[\times H \to L^2(\mathcal{G}),\\ (p,u) \mapsto -u''+au-\lambda_k|u|^{p-2}u. \end{cases}$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Functional space with extra regularity:

$$H := \Big\{ u \in H^1_Z \mid u \text{ is } H^2 \text{ in each edge}, u \text{ satisfies Kirchhoff's conditions} \Big\}.$$

We fix $k \geq 1$ and we define the map

$$F:\begin{cases} [2,+\infty[\times H \to L^2(\mathcal{G}),\\ (p,u) \mapsto -u''+au-\lambda_k|u|^{p-2}u. \end{cases}$$

When p = 2,

$$F(2, u) = 0 \iff u \in E_k$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Functional space with extra regularity:

$$H := \Big\{ u \in H^1_Z \mid u \text{ is } H^2 \text{ in each edge}, u \text{ satisfies Kirchhoff's conditions} \Big\}.$$

We fix $k \geq 1$ and we define the map

$$F:\begin{cases} [2,+\infty[\times H \to L^2(\mathcal{G}),\\ (p,u) \mapsto -u''+au-\lambda_k|u|^{p-2}u. \end{cases}$$

When p = 2,

$$F(2, u) = 0 \iff u \in E_k$$

and when p > 2,

$$F(p, u) = 0 \iff u \text{ solves } (\mathcal{P}_{p,k}).$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
Rough i	dea				

We want to study the dependence of roots of F in terms of p.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
Rough i	dea				

We want to study the dependence of roots of F in terms of p. We would like to use Implicit Function Theorems, but F "vanishes too much" for p = 2 (in fact, vanishes identically on E_k !)

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
Rough i	dea				

We want to study the dependence of roots of *F* in terms of *p*. We would like to use Implicit Function Theorems, but *F* "vanishes too much" for p = 2 (in fact, vanishes identically on E_k !)

Lyapunov-Schmidt reduction ($P_{E_k}, P_{E_k^{\perp}}$: L^2 -orthogonal projections):

$$F(p, u) = 0 \iff \begin{cases} P_{E_k^{\perp}}F(p, u) = 0, \\ P_{E_k}F(p, u) = 0, \end{cases}$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
Rough i	dea				

We want to study the dependence of roots of F in terms of p. We would like to use Implicit Function Theorems, but F "vanishes too much" for p = 2 (in fact, vanishes identically on E_k !)

Lyapunov-Schmidt reduction ($P_{E_k}, P_{E_k^{\perp}}$: L^2 -orthogonal projections):

$$F(p, u) = 0 \iff \begin{cases} P_{E_k^{\perp}} F(p, u) = 0, \\ P_{E_k} F(p, u) = 0, \end{cases}$$

we obtain good invertibility properties on E_k^{\perp} and we are then reduced to a finite dimensional problem on E_k .

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
--------------	-------------------	------------	-------------------	-----------------	----------------

A word of caution

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
--------------	-------------------	------------	-------------------	-----------------	----------------

A word of caution

Be careful! A Implicit Function Theorems require regularity!

To perform the Lyapunov-Schmidt reduction around u_* , we will need

$$F:\begin{cases} [2,+\infty[\times H \to L^2(\mathcal{G}),\\ (p,u) \mapsto -u'' + au - \lambda_k |u|^{p-2}u. \end{cases}$$

to be C^2 in u in the neighborhood of $(2, u_*)$.

$ \begin{array}{ccc} \text{Introduction} & p \rightarrow 2 \\ \hline \hline$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
--	------------	-------------------	-----------------	----------------

Expressions such as

 $u \mapsto u \ln |u|$

and its derivative

 $u \mapsto 1 + \ln |u|$

appear in the study.

$ \begin{array}{ccc} \text{Introduction} & p \rightarrow 2 \\ \hline \hline$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
--	------------	-------------------	-----------------	----------------

Expressions such as

 $u \mapsto u \ln |u|$

and its derivative

 $u \mapsto 1 + \ln |u|$

appear in the study. Regularity issues occur when u vanishes!

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
--

Expressions such as

 $u \mapsto u \ln |u|$

and its derivative

 $u \mapsto 1 + \ln |u|$

appear in the study. Regularity issues occur when u vanishes!

Definition (An important set)

$$\mathcal{S}:=\Big\{u\in H\mid \inf_{x\in\mathcal{G}}(|u(x)|+|u'(x)|)>0\Big\}.$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Expressions such as

 $u \mapsto u \ln |u|$

and its derivative

 $u \mapsto 1 + \ln |u|$

appear in the study. Regularity issues occur when u vanishes!

Definition (An important set)

$$S:=\Big\{u\in H\mid \inf_{x\in\mathcal{G}}(|u(x)|+|u'(x)|)>0\Big\}.$$

Remark: if $u \in E_k$, then

$$\left(u\in S
ight) \iff u$$
 does not vanish identically on edge of $\mathcal{G}.$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Nondegenerate solutions of the reduced problem

Definition

A solution $u_* \in E_k \cap S$ of the reduced problem on E_k is **nondegenerate** if and only if the map

$$E_k \to E_k : \psi \mapsto P_{E_k} ((1 + \ln |u_*|)\psi)$$

is invertible.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Nondegenerate solutions of the reduced problem

Definition

A solution $u_* \in E_k \cap S$ of the reduced problem on E_k is **nondegenerate** if and only if the map

$$E_k \to E_k : \psi \mapsto P_{E_k} ((1 + \ln |u_*|)\psi)$$

is invertible.

Remark: nondegeneracy always holds if dim $E_k = 1$.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
--------------	-------------------	------------	-------------------	-----------------	----------------

Main Theorem

Theorem

Let $k \geq 1$ be an integer and let $u_* \in E_k \cap S$.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Main Theorem

Theorem

Let $k \geq 1$ be an integer and let $u_* \in E_k \cap S$.

I non-existence: If u_∗ is not a solution of the reduced problem, then there exists a neighbourhood U of (2, u_∗) in [2, +∞[× H so that problem (P_{p,k}) has no solution in U with p > 2;

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Main Theorem

Theorem

Let $k \geq 1$ be an integer and let $u_* \in E_k \cap S$.

- I non-existence: If u_∗ is not a solution of the reduced problem, then there exists a neighbourhood U of (2, u_∗) in [2, +∞[× H so that problem (P_{p,k}) has no solution in U with p > 2;
- 2 existence, uniqueness and non-degeneracy: If u_{*} is a nondegenerate solution of the reduced problem, then there exists a neighbourhood U of (2, u_{*}) in [2, +∞[× H and a number ε > 0 so that for all p ∈]2, 2 + ε], there exists a unique u_p ∈ H so that (p, u_p) belongs to U and so that u_p is a solution of problem (P_{p,k}).

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Symmetry breaking	NGS may vanish!	Open questions
---	-------------------	-----------------	----------------

Variational formulation of $(\mathcal{P}_{p,k})$

Definition (Action functional)

The action functional $J_{\rho,k}: H^1_Z \to \mathbb{R}$ is defined by

$$J_{p,k}(u) := \frac{1}{2} \|u'\|_{L^2(\mathcal{G})}^2 + \frac{a}{2} \|u\|_{L^2(\mathcal{G})}^2 - \frac{\lambda_k}{p} \|u\|_{L^p(\mathcal{G})}^p.$$

Solutions of $(\mathcal{P}_{p,k})$ correspond to critical points of $J_{p,k}$ over H^1_Z .

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Symmetry breaking	NGS may vanish!	Open questions
---	-------------------	-----------------	----------------

Variational formulation of $(\mathcal{P}_{p,k})$

Definition (Action functional)

The action functional $J_{\rho,k}: H^1_Z \to \mathbb{R}$ is defined by

$$J_{p,k}(u) := \frac{1}{2} \|u'\|_{L^2(\mathcal{G})}^2 + \frac{a}{2} \|u\|_{L^2(\mathcal{G})}^2 - \frac{\lambda_k}{p} \|u\|_{L^p(\mathcal{G})}^p.$$

Solutions of $(\mathcal{P}_{p,k})$ correspond to critical points of $J_{p,k}$ over H_Z^1 . One cannot find minimizers of $J_{p,k}$ over H_Z^1 . Indeed, if $u \neq 0$, then

$$J_{p,k}(tu)=\frac{t^2}{2}\|u'\|_{L^2(\mathcal{G})}^2+\frac{at^2}{2}\|u\|_{L^2(\mathcal{G})}^2-\frac{t^p}{p}\|u\|_{L^p(\mathcal{G})}^p\xrightarrow[t\to\infty]{}-\infty.$$

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	tions
--	-------

Variational formulation of $(\mathcal{P}_{p,k})$

Definition (Action functional)

The action functional $J_{\rho,k}: H^1_Z \to \mathbb{R}$ is defined by

$$J_{p,k}(u) := \frac{1}{2} \|u'\|_{L^2(\mathcal{G})}^2 + \frac{a}{2} \|u\|_{L^2(\mathcal{G})}^2 - \frac{\lambda_k}{p} \|u\|_{L^p(\mathcal{G})}^p.$$

Solutions of $(\mathcal{P}_{p,k})$ correspond to critical points of $J_{p,k}$ over H_Z^1 . One cannot find minimizers of $J_{p,k}$ over H_Z^1 . Indeed, if $u \neq 0$, then

$$J_{p,k}(tu)=\frac{t^2}{2}\|u'\|_{L^2(\mathcal{G})}^2+\frac{at^2}{2}\|u\|_{L^2(\mathcal{G})}^2-\frac{t^p}{p}\|u\|_{L^p(\mathcal{G})}^p\xrightarrow[t\to\infty]{}-\infty.$$

A common strategy to obtain a suitable notion of minimizers is to introduce the *Nehari manifold*, as in Colette's talk.

Damien Galant

Qualitative properties of solutions

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

The Nehari manifold

Definition (Nehari manifold)

The Nehari manifold is defined by

$$\begin{split} \mathcal{N}_{p,k}(\mathcal{G}) &:= \Big\{ u \in H^1_Z(\mathcal{G}) \setminus \{0\} \mid J_{p,k}'(u)[u] = 0 \Big\} \\ &= \Big\{ u \in H^1_Z(\mathcal{G}) \setminus \{0\} \mid \|u'\|_{L^2(\mathcal{G})}^2 + a\|u\|_{L^2(\mathcal{G})}^2 = \lambda_k \|u\|_{L^p(\mathcal{G})}^p \Big\}. \end{split}$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

The Nehari manifold

Definition (Nehari manifold)

The Nehari manifold is defined by

$$\begin{split} \mathcal{N}_{p,k}(\mathcal{G}) &:= \Big\{ u \in H^1_Z(\mathcal{G}) \setminus \{0\} \mid J_{p,k}'(u)[u] = 0 \Big\} \\ &= \Big\{ u \in H^1_Z(\mathcal{G}) \setminus \{0\} \mid \|u'\|_{L^2(\mathcal{G})}^2 + a\|u\|_{L^2(\mathcal{G})}^2 = \lambda_k \|u\|_{L^p(\mathcal{G})}^p \Big\}. \end{split}$$

If $u \in \mathcal{N}_{p,k}(\mathcal{G})$, then

$$J_{p,k}(u) = \lambda_k \Big(\frac{1}{2} - \frac{1}{p}\Big) \|u\|_{L^p(\mathcal{G})}^p.$$

In particular, $J_{p,k}$ is bounded from below on $\mathcal{N}_{p,k}(\mathcal{G})$.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Ground states

Definition (Ground state)

A ground state is a function $u \in \mathcal{N}_{p,k}(\mathcal{G})$ attaining the minimum of $J_{p,k}$ over $\mathcal{N}_{p,k}(\mathcal{G})$.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Ground states

Definition (Ground state)

A ground state is a function $u \in \mathcal{N}_{p,k}(\mathcal{G})$ attaining the minimum of $J_{p,k}$ over $\mathcal{N}_{p,k}(\mathcal{G})$.

Ground states always exist when \mathcal{G} is compact and provide positive solutions to $(\mathcal{P}_{p,k})$.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Nodal ground states

Definition (Nodal Nehari set)

The nodal Nehari set is defined by

$$\mathcal{N}_{p,k}^{\pm}(\mathcal{G}) := \Big\{ u \in H^1_Z(\mathcal{G}) \setminus \{0\} \mid u^+ \in \mathcal{N}_{p,k}, u^- \in \mathcal{N}_{p,k} \Big\}.$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Nodal ground states

Definition (Nodal Nehari set)

The nodal Nehari set is defined by

$$\mathcal{N}^{\pm}_{p,k}(\mathcal{G}) := \Big\{ u \in H^1_Z(\mathcal{G}) \setminus \{0\} \mid u^+ \in \mathcal{N}_{p,k}, u^- \in \mathcal{N}_{p,k} \Big\}.$$

Definition (Nodal ground state)

A nodal ground state is a function $u \in \mathcal{N}_{p,k}^{\pm}(\mathcal{G})$ attaining the minimum of $J_{p,k}$ over $\mathcal{N}_{p,k}^{\pm}(\mathcal{G})$.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Nodal ground states

Definition (Nodal Nehari set)

The nodal Nehari set is defined by

$$\mathcal{N}_{p,k}^{\pm}(\mathcal{G}) := \Big\{ u \in H^1_Z(\mathcal{G}) \setminus \{0\} \mid u^+ \in \mathcal{N}_{p,k}, u^- \in \mathcal{N}_{p,k} \Big\}.$$

Definition (Nodal ground state)

A nodal ground state is a function $u \in \mathcal{N}_{p,k}^{\pm}(\mathcal{G})$ attaining the minimum of $J_{p,k}$ over $\mathcal{N}_{p,k}^{\pm}(\mathcal{G})$.

Nodal ground states always exist when \mathcal{G} is compact and provide sign-changing solutions to $(\mathcal{P}_{p,k})$ with two nodal zones.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Variational formulation of the reduced problem on E_k

Definition (Reduced functional)

The reduced functional $J_{*,k}: E_k \to \mathbb{R}$ is defined by

$$J_{*,k}(\psi) := rac{\lambda_k}{4} \int_{\mathcal{G}} \psi^2 (1 - 2 \ln |\psi|) \,\mathrm{d}x.$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Variational formulation of the reduced problem on E_k

Definition (Reduced functional)

The reduced functional $J_{*,k}: E_k \to \mathbb{R}$ is defined by

$$J_{*,k}(\psi) := \frac{\lambda_k}{4} \int_{\mathcal{G}} \psi^2 (1 - 2 \ln |\psi|) \,\mathrm{d}x.$$

For all $\psi \in E_k$,

$$\frac{J_{p,k}(\psi)}{p-2} \xrightarrow[p\to 2]{} J_{*,k}(\psi);$$
Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Variational formulation of the reduced problem on E_k

Definition (Reduced functional)

The reduced functional $J_{*,k}: E_k \to \mathbb{R}$ is defined by

$$J_{*,k}(\psi) := \frac{\lambda_k}{4} \int_{\mathcal{G}} \psi^2 (1 - 2 \ln |\psi|) \,\mathrm{d}x.$$

For all $\psi \in E_k$,

$$\frac{J_{p,k}(\psi)}{p-2} \xrightarrow[p\to 2]{} J_{*,k}(\psi);$$

• The reduced functional is C^2 on $E_k \cap S$;

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Variational formulation of the reduced problem on E_k

Definition (Reduced functional)

The reduced functional $J_{*,k}: E_k \to \mathbb{R}$ is defined by

$$J_{*,k}(\psi) := \frac{\lambda_k}{4} \int_{\mathcal{G}} \psi^2 (1 - 2 \ln |\psi|) \,\mathrm{d}x.$$

For all $\psi \in E_k$,

$$\frac{J_{p,k}(\psi)}{p-2} \xrightarrow[p\to 2]{} J_{*,k}(\psi);$$

- The reduced functional is C^2 on $E_k \cap S$;
- Solutions of the reduced problem correspond to critical points of $J_{*,k}$;

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Variational formulation of the reduced problem on E_k

Definition (Reduced functional)

The reduced functional $J_{*,k}: E_k \to \mathbb{R}$ is defined by

$$J_{*,k}(\psi) := \frac{\lambda_k}{4} \int_{\mathcal{G}} \psi^2 (1 - 2 \ln |\psi|) \,\mathrm{d}x.$$

For all $\psi \in E_k$,

$$\frac{J_{p,k}(\psi)}{p-2} \xrightarrow[p\to 2]{} J_{*,k}(\psi);$$

- The reduced functional is C^2 on $E_k \cap S$;
- Solutions of the reduced problem correspond to critical points of $J_{*,k}$;
- Nondegenerate solutions of the reduced problem correspond to nondegenerate critical points of J_{*,k}.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

The reduced Nehari manifold

Definition (Reduced Nehari manifold)

Given a positive integer k, the reduced Nehari manifold is given by

$$\mathcal{N}_{*,k}(\mathcal{G}) := \left\{ \psi \in E_k \setminus \{0\} \mid J'_{*,k}(\psi)[\psi] = 0 \right\}$$
$$= \left\{ \psi \in E_k \setminus \{0\} \mid \int_{\mathcal{G}} \psi^2 \ln |\psi| = 0 \right\}.$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

The reduced Nehari manifold

Definition (Reduced Nehari manifold)

Given a positive integer k, the reduced Nehari manifold is given by

$$\mathcal{N}_{*,k}(\mathcal{G}) := \left\{ \psi \in E_k \setminus \{0\} \mid J'_{*,k}(\psi)[\psi] = 0 \right\}$$
$$= \left\{ \psi \in E_k \setminus \{0\} \mid \int_{\mathcal{G}} \psi^2 \ln |\psi| = 0 \right\}.$$

All critical points of $J_{*,k}$ belong to $\mathcal{N}_{*,k}$.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

The reduced Nehari manifold

Definition (Reduced Nehari manifold)

Given a positive integer k, the reduced Nehari manifold is given by

$$\mathcal{N}_{*,k}(\mathcal{G}) := \left\{ \psi \in E_k \setminus \{0\} \mid J'_{*,k}(\psi)[\psi] = 0
ight\}$$

= $\left\{ \psi \in E_k \setminus \{0\} \mid \int_{\mathcal{G}} \psi^2 \ln |\psi| = 0
ight\}.$

All critical points of $J_{*,k}$ belong to $\mathcal{N}_{*,k}$.

Remark: since dim $E_1 = 1$, $\mathcal{N}_{*,1}(\mathcal{G})$ only contains two elements: a positive one and a negative one.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Theorem

If $p \approx 2$ is close enough to 2, the positive solution of $(\mathcal{P}_{p,1})$ is unique and is a ground state of the problem.

Theorem

If $p \approx 2$ is close enough to 2, the positive solution of $(\mathcal{P}_{p,1})$ is unique and is a ground state of the problem.

Main ingredients of the proof.

Show that there exists C > 0 such that all positive solutions of (P_{p,1}) with 2 H¹(G)</sub> ≤ C;

Theorem

If $p \approx 2$ is close enough to 2, the positive solution of $(\mathcal{P}_{p,1})$ is unique and is a ground state of the problem.

- Show that there exists C > 0 such that all positive solutions of (P_{p,1}) with 2 H¹(G)</sub> ≤ C;
- When p → 2, sequences of positive solutions to (P_{p,1}) converge weakly (up to subsequences) to the only positive element u_{*} ∈ N_{*,1};

Theorem

If $p \approx 2$ is close enough to 2, the positive solution of $(\mathcal{P}_{p,1})$ is unique and is a ground state of the problem.

- Show that there exists C > 0 such that all positive solutions of (P_{p,1}) with 2 H¹(G)</sub> ≤ C;
- When p → 2, sequences of positive solutions to (P_{p,1}) converge weakly (up to subsequences) to the only positive element u_{*} ∈ N_{*,1};
- Since dim $E_1 = 1$, u_* is a nondegenerate critical point of J_* ;

Theorem

If $p \approx 2$ is close enough to 2, the positive solution of $(\mathcal{P}_{p,1})$ is unique and is a ground state of the problem.

- Show that there exists C > 0 such that all positive solutions of (P_{p,1}) with 2 H¹(G)</sub> ≤ C;
- When p → 2, sequences of positive solutions to (P_{p,1}) converge weakly (up to subsequences) to the only positive element u_{*} ∈ N_{*,1};
- Since dim $E_1 = 1$, u_* is a nondegenerate critical point of J_* ;
- The Lyapunov-Schmidt reduction proves the uniqueness result.

Convergence of nodal ground states when p ightarrow 2

Theorem (Convergence of nodal ground states)

If $(u_{p_n})_n$ is a sequence of nodal ground states of $(\mathcal{P}_{p,k})$ with $p_n \to 2$, then up to a subsequence one has that

$$u_{p_n} \xrightarrow[n \to \infty]{H^2} u_*,$$

where $u_* \in E_2$ minimizes J_* over $\mathcal{N}_{*,2}$.

Convergence of nodal ground states when p ightarrow 2

Theorem (Convergence of nodal ground states)

If $(u_{p_n})_n$ is a sequence of nodal ground states of $(\mathcal{P}_{p,k})$ with $p_n \to 2$, then up to a subsequence one has that

$$u_{p_n} \xrightarrow[n \to \infty]{H^2} u_*,$$

where $u_* \in E_2$ minimizes J_* over $\mathcal{N}_{*,2}$.

If u_* belongs to S (i.e. does not vanish on any edge) and is nondegenerate, one may then obtain uniqueness and symmetry results by using the Lyapunov-Schmidt reduction.

Introduction	p → 2	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
--------------	-------	------------	-------------------	-----------------	----------------

The graph \mathcal{G}_L

A compact symmetric 3-star graph with edges of length L.

Introduction	p → 2	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
--------------	-------	------------	-------------------	-----------------	----------------

The graph \mathcal{G}_L

A compact symmetric 3-star graph with edges of length L.

Definition (Symmetric functions on G_L)

A function $u : \mathcal{G}_L \to \mathbb{R}$ is *symmetric* if its restrictions to all edges, viewed as functions $[0, L] \to \mathbb{R}$, are all equal.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Symmetry breaking

Proposition

For any p > 2, if L is large enough then the ground state on \mathcal{G}_L is not symmetric.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Symmetry breaking

Proposition

For any p > 2, if L is large enough then the ground state on G_L is not symmetric.

Proof.

A rearrangement argument implies that symmetric functions have a too high action compared to suitable nonsymmetric ones. Since L is large, the level of the *soliton* in $H^1(\mathbb{R})$ plays an important role.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Symmetry breaking

Proposition

For any p > 2, if L is large enough then the ground state on G_L is not symmetric.

Proof.

A rearrangement argument implies that symmetric functions have a too high action compared to suitable nonsymmetric ones. Since L is large, the level of the *soliton* in $H^1(\mathbb{R})$ plays an important role.

Conclusion

Symmetry breaking occurs!

Introduction	p → 2	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions
--------------	-------	------------	-------------------	-----------------	----------------

A bifurcation diagram for positive solutions on \mathcal{G}_L : *p* is fixed, *L* varies

Vertical axis: possible values of $u'_1(0)$, the derivative of the solution on one given edge of the graph:

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Another bifurcation diagram: L is fixed, p varies

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

What about *p* close to 2?

We need to find minimizers of the reduced functional $J_{*,2}$ on $\mathcal{N}_{*,2}$.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

What about p close to 2?

We need to find minimizers of the reduced functional $J_{*,2}$ on $\mathcal{N}_{*,2}$. The first step is to identify the second eigenspace E_2 .

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

What about p close to 2?

We need to find minimizers of the reduced functional $J_{*,2}$ on $\mathcal{N}_{*,2}$. The first step is to identify the second eigenspace E_2 . Identifying functions on \mathcal{G}_L with triples of functions from [0, L] to \mathbb{R} , we obtain

$$E_2 = \Big\{ (k_1 \sin(x\pi/L), k_2 \sin(x\pi/L), k_3 \sin(x\pi/L)) \mid k_1 + k_2 + k_3 = 0 \Big\}.$$

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Minimizers points of the reduced functional

Proposition

The set of minimizers of $J_{*,2}$ on $\mathcal{N}_{*,2}$ is

$$S_m := \left\{ (k_m, -k_m, 0), (-k_m, k_m, 0), (k_m, 0, -k_m), \\ (-k_m, 0, k_m), (0, k_m, -k_m), (0, -k_m, k_m) \right\},\$$

with $k_m := \frac{2}{\sqrt{e}}$.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Two asymptotic results

Theorem (2024?)

For any p > 2, if L is long enough, then NGS on \mathcal{G}_L vanish on one edge.

Theorem (2024?)

For any L > 0, if p > 2 is close enough to 2, then NGS on \mathcal{G}_L vanish on one edge.

Introduction	$p \rightarrow 2$	GS and NGS	Symmetry breaking	NGS may vanish!	Open questions

Summary of what we know about \mathcal{G}_L

	GS	NGS
$p \rightarrow 2 \ (L \text{ fixed})$	Unique, symmetric	Vanish on one edge
$L \rightarrow +\infty \ (p > 2 \text{ fixed})$	Not symmetric	Vanish on one edge

What to do when u_* vanishes on an edge?

In the Lyapunov-Schmidt reduction, we can only deal with eigenfunctions not vanishing on any edge (i.e. $u_* \in S$) due to regularity reasons.

What to do when u_* vanishes on an edge?

In the Lyapunov-Schmidt reduction, we can only deal with eigenfunctions not vanishing on any edge (i.e. $u_* \in S$) due to regularity reasons.

Question

Assuming dim $E_k = 1$, can we perform a Lyapunov-Schmidt reduction starting from an eigenfunction vanishing on one edge of a graph? Can we obtain existence and uniqueness results of solutions of the nonlinear problem close to u_* ?

When studying properties of ground states and nodal ground states on compact symmetric stars, we use the fact that *when the edges are long*, *(nodal) ground states look like portions of solitons.*

When studying properties of ground states and nodal ground states on compact symmetric stars, we use the fact that *when the edges are long*, *(nodal) ground states look like portions of solitons.*

Question

Can the asymptotic arguments be dropped in order to identify more precise thresholds of:

When studying properties of ground states and nodal ground states on compact symmetric stars, we use the fact that *when the edges are long*, *(nodal) ground states look like portions of solitons.*

Question

Can the asymptotic arguments be dropped in order to identify more precise thresholds of:

symmetry vs asymmetry;

When studying properties of ground states and nodal ground states on compact symmetric stars, we use the fact that *when the edges are long*, *(nodal) ground states look like portions of solitons.*

Question

Can the asymptotic arguments be dropped in order to identify more precise thresholds of:

- *symmetry vs asymmetry;*
- solutions vanishing on edge vs solutions in S?

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives
•						

Thanks for your attention!

References for $p \rightarrow 2$

The $p \rightarrow 2$ analysis was largely based on

- M. Grossi, AOn the shape of solutions of an asymptotically linear problem A, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), Vol. VIII (2009), 429–449.
- D. Bonheure, V. Bouchez, C. Grumiau, J. Van Schaftingen Asymptotics and symmetries of least energy nodal solutions of Lane-Emden problems with slow growth, Communications in Contemporary Mathematics, Vol. 10, No. 4 (2008) 609–631.
- C. Grumiau, Symmetries of solutions for nonlinear Schrödinger equations: Numerical and Theoretical approaches, PhD Thesis (UMONS, 2010-2011).

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives
		•				

A more precise result on NGS vanishing on edges

Figure: A graph under study: $L_1 = L_2 \ge L_3 \ge L_4 \ge L_5$.

For such a graph, if a > 0 and p > 2 are fixed, there exists $\overline{L} > 0$ so that if $L_1 \ge \overline{L}$ then NGS vanish on all edges except two of length L_1 .

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives
			■ · · ,=			

Maximizers of $J_{*,2}$

Theorem

The set of maximizers of $J_{*,2}$ is

$$S_{M} := \Big\{ (k_{M}, k_{M}, -2k_{M}), (-k_{M}, -k_{M}, 2k_{M}), (k_{M}, -2k_{M}, k_{M}), \\ (-k_{M}, 2k_{M}, -k_{M}), (-2k_{M}, k_{M}, k_{M}), (2k_{M}, -k_{M}, -k_{M}) \Big\},$$

with $k_M := \frac{\sqrt[3]{2}}{\sqrt{e}}$.

They correspond to solutions of the nonlinear problem that can be found by shooting methods or variationally.
Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives
				•		

The second eigenspace may have high dimension

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives
				•		

The second eigenspace may have high dimension

Example

Computations on the blackboard!

Thanks!ReferenceMore about NGSMaximizers of $J_{*,2}$ More on dim E_2 More on symmetry-breakingMore perspectives \Box \Box \Box \Box \Box \Box \Box

An important $H^1(\mathbb{R})$ solution: the soliton φ_p (a > 0)

For every p > 2, we consider the *soliton* φ_p , the unique positive and even solution to

$$-u''+au=\lambda_1(\mathcal{G}_L)|u|^{p-2}u.$$

Thanks!ReferencesMore about NGSMaximizers of $J_{*,2}$ More on dim E_2 More on symmetry-breakingMore perspectives \Box \Box \Box \Box \Box \Box \Box

An important $H^1(\mathbb{R})$ solution: the soliton φ_p (a > 0)

For every p > 2, we consider the *soliton* φ_p , the unique positive and even solution to

$$-u'' + au = \lambda_1(\mathcal{G}_L)|u|^{p-2}u.$$

The level of φ_p is important to study solutions on \mathcal{G}_L when L is large:

$$s_p := J_{p,1}(\varphi_p).$$

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives

Proposition

For any p > 2, if L is large enough then the ground state on G_L is not symmetric.

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives

Proposition

For any p > 2, if L is large enough then the ground state on \mathcal{G}_L is not symmetric.

Proof.

A rearrangement argument implies that the action of any symmetric function in \mathcal{N}_p is larger than $\frac{3}{2}s_p$.

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives

Proposition

For any p > 2, if L is large enough then the ground state on \mathcal{G}_L is not symmetric.

Proof.

A rearrangement argument implies that the action of any symmetric function in \mathcal{N}_p is larger than $\frac{3}{2}s_p$. Moreover, $\inf_{\mathcal{N}_p} J_p$ gets close to s_p when L is large.

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives

Proposition

For any p > 2, if L is large enough then the ground state on \mathcal{G}_L is not symmetric.

Proof.

A rearrangement argument implies that the action of any symmetric function in \mathcal{N}_p is larger than $\frac{3}{2}s_p$. Moreover, $\inf_{\mathcal{N}_p} J_p$ gets close to s_p when *L* is large. Since $\frac{3}{2} > 1$, GS are not symmetric when *L* is large.

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives

Proposition

For any p > 2, if L is large enough then the ground state on \mathcal{G}_L is not symmetric.

Proof.

A rearrangement argument implies that the action of any symmetric function in \mathcal{N}_p is larger than $\frac{3}{2}s_p$. Moreover, $\inf_{\mathcal{N}_p} J_p$ gets close to s_p when *L* is large. Since $\frac{3}{2} > 1$, GS are not symmetric when *L* is large.

Conclusion

Symmetry breaking occurs!

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives

Another asymptotic regime: $p \rightarrow +\infty$

About positive solutions ($\Omega \subseteq \mathbb{R}^2$):

X. Ren, J. Wei, On a Two-Dimensional Elliptic Problem with Large Exponent in Nonlinearity, Transactions of the American Mathematical Society, Vol. 343, No. 2 (Jun., 1994), 749–763.

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives

Another asymptotic regime: $p \to +\infty$

About positive solutions ($\Omega \subseteq \mathbb{R}^2$):

X. Ren, J. Wei, On a Two-Dimensional Elliptic Problem with Large Exponent in Nonlinearity, Transactions of the American Mathematical Society, Vol. 343, No. 2 (Jun., 1994), 749–763.

About NGS ($\Omega \subseteq \mathbb{R}^2$):

- M. Grossi, C. Grumiau, F. Pacella, Lane–Emden problems: Asymptotic behavior of low energy nodal solutions, Ann. I. H. Poincaré AN 30 (2013) 121–140.
- M. Grossi, C. Grumiau, F. Pacella, Lane Emden problems with large exponents and singular Liouville equations, J. Math. Pures Appl. 101 (2014) 735–754.

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives

Another asymptotic regime: $p \to +\infty$

About positive solutions ($\Omega \subseteq \mathbb{R}^2$):

X. Ren, J. Wei, On a Two-Dimensional Elliptic Problem with Large Exponent in Nonlinearity, Transactions of the American Mathematical Society, Vol. 343, No. 2 (Jun., 1994), 749–763.

About NGS ($\Omega \subseteq \mathbb{R}^2$):

- M. Grossi, C. Grumiau, F. Pacella, Lane–Emden problems: Asymptotic behavior of low energy nodal solutions, Ann. I. H. Poincaré AN 30 (2013) 121–140.
- M. Grossi, C. Grumiau, F. Pacella, Lane Emden problems with large exponents and singular Liouville equations, J. Math. Pures Appl. 101 (2014) 735–754.

In those works, one needs to study the Green's function of $-\Delta$ in $\Omega.$

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives

Another asymptotic regime: $p \to +\infty$

About positive solutions ($\Omega \subseteq \mathbb{R}^2$):

X. Ren, J. Wei, On a Two-Dimensional Elliptic Problem with Large Exponent in Nonlinearity, Transactions of the American Mathematical Society, Vol. 343, No. 2 (Jun., 1994), 749–763.

About NGS ($\Omega \subseteq \mathbb{R}^2$):

M. Grossi, C. Grumiau, F. Pacella, Lane–Emden problems: Asymptotic behavior of low energy nodal solutions, Ann. I. H. Poincaré – AN 30 (2013) 121–140.

M. Grossi, C. Grumiau, F. Pacella, Lane Emden problems with large exponents and singular Liouville equations, J. Math. Pures Appl. 101 (2014) 735–754.

In those works, one needs to study the Green's function of $-\Delta$ in Ω . Works in dimension $N \ge 3$ also exist.

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives

Higher eigenvalues

In the Lyapunov-Schmidt reduction procedure, we can work with any eigenvalue λ_k .

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives

Higher eigenvalues

In the Lyapunov-Schmidt reduction procedure, we can work with any eigenvalue λ_k . So far, most of the study focuses on the case k = 1, associated to positive solutions and ground states, and k = 2, associated to nodal ground states.

Thanks!	References	More about NGS	Maximizers of $J_{*,2}$	More on dim E_2	More on symmetry-breaking	More perspectives

Higher eigenvalues

In the Lyapunov-Schmidt reduction procedure, we can work with any eigenvalue λ_k . So far, most of the study focuses on the case k = 1, associated to positive solutions and ground states, and k = 2, associated to nodal ground states. It would be interesting to study which solutions of nonlinear problems are associated with higher eigenfunctions.